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ABSTRACT ? .  ,~ ~

We present some new derivations,~ which are rather short ,

and direct , of properties of a nonlinear version of a minimax

tree network location problem. The properties provide neces-

sary and sufficient conditions for optimality, a means of com-

puting the optimum objective function value, and a means of

constructing the unique optimum location.
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The purpose of th is  note i~ to rov L~~~ ..~ . . ,  r~i t h e r  shorL . , and d~ re~ :

proofs  fo r  proper t ies , est a b l is i i cd  by ~EA R i~~ [ -
~ 
j, ut a qu i t e  g~~ ;~~~~-a~. r cr .—

l inear  minimax location problem . As .i n~-tLu r/.~i consequence  of ~he app~ uac r~

we use, we obtain as well a new family of c~ uivalent conditions for opti—

mallt y  to the problem.

So as to state the problem , we ~up po51/ we ac~ ~ iv tn a fin it e undirected

tree network with positive ,tr - lengths. . We derI)te l~’ 1 ~ii inibedding of the given

tree (e.g., a planar imbedding such a~~ a road network) having rectifiable arcs ,

so that it is meaning ful t. speak of points on the arcs as well as at vertices .

For every pa ir of points x and y, x ,ytT , w& suppose the distance between

x and y, d(x ,y), to be well defined , a~, in reference 2. The distance has the

customary properties for every x , yd l , that d(x ,y) ~ 0; that d(x ,y) = 0 iff

x = y; and that d(x ,y)  = d ( y , x); also d(x ,y) ~ d(x ,z) -f d(z ,y )  f or every

x , y , zcT.

The problem of interest is as follows . Suppose “existing facilities”

are at distinct vertex locations v
1 

. . . .  v~ in the tree , and that a “new facility ”

is to be located at x. For each vertex vj. r
1
[d(x,v

1
)] is a “cos t” or a

“loss” incurred , strictly proportional to the distance between x and 
~~
.,

and

f(x) max{f .[d(x,v.)] 1 ~ I m} (1)

is the maximum loss. The problem of interest is t ; find x~ in T to mini-

mize f defined by (1). One may wish to employ such an approach when it is

more Important to provide quick service than t~ minimize total cost.

So as to state the problem more precisely ,  denote the diameter of

the tree by ~S. We assume f
1 
is a strictly increasing, cont inuous f unc tion ,

with domain [o,SJ , for l~~ i~~in. Also we define f’~ = f (x *); continuity and

compactness considerations assure the existence of a minimum of f.

The assumed properties for each f . are qu ite weak , compar ’d to assumptions
I i

1.

hII_ ~~~~~~~~ — 
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in earlier related literature. To the best of our knowledge , Dearing was

the first to solve the problem with these assumptions : al l  previous work

assumes the functions f1 to be linear , and is discussed by DEARING and

FRANCIS [2 1.

Subsequent to the analysis we indicate in some detail how our results

d i f f e r  from Dearing ’s. 
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ANALYS IS

The fo l lowing de f in i t ions  f ac i l i t a t e  the a n aly s i s :

M E {l , 2, . . . , m}

MP a {i ~ M : f* < f (o)}

MS a {i E M : f ( s )  ( f * }

ci ’ a max Lf . (O) : i ~ MP}

ci max [f .(O) : i M]

a m m  [f.(ó) : I € NP)

a mm [f 1(6) : i t MI

f ’ ( x )  a max [f 1(x) : i € M P ] ,  V x € T .

We remark that  any ~~~ i c MS is a secondary function in the ser~se that

it may be deleted from the definition of f without chang ing f , that ~a ,

f (x) = f ’ ( x )

for all x e T. However, func tions f~ ~ I ~ MP ar e ~~~~~~~ functions in the

sense that f may be changed if any such function is deleted.

The above defin it ions lead to

REMARK 1. (a) MP #

(b) a’ < a < f* <

(c) We may assume a < n without loss of generality.

Proof. (a) The proof is simple and we omit it.

(b) The proof is trivial except for a < f *, Let f(x*) f*,

We then have

f~~(O) ~ f1Id(x*, v1
)]  < f (x *) f*, 1 < I <

giving a <

-__
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(c) If  ~ > ~ then 3 ~u n c t i u m ~ ;i~~ f. ~~ tc~~ t f. O) — (~ )

f .(~~) ‘~ t .(0) ~- a < f* , so ~ f u n c t ~~~~n f . r~.iy ht- J e i e ~~c :  f r o m  t r . c

d e f i n i t i o n  of f w i t h o u t  cli~ n~~i rt ~’, f .

The fo l lowing  remark e s t ab t i sn e s  ~r~~~’- r t  los o f f c ~~:t ions which oc :~ r

repea ted l y in the  subsequen t  analysis . The proof 1 .  ~~~~~~~~~~~~~~~~ ‘c u t

t a n g e n t i a l  to tue  main bod y of the  d ev c l op m e n t , and ~~ - r e1c-~ .~~e t t - ~ 7r3 ;: (of

a more extensive form of the remark)  to the ~~~~~~~~~

R EMAR K 2. Let {j k }  c ~-1 wi th  j  < k. L e f in - tj i -  s t r i c t l y  1~~~( r . : a si n /: , c~~~~t ~~~~~~~~

function with nonempty domain [a .k, b .k I by

g.~~(z) = fT
1
(z) + [

1 (z) .

where

a .k a max [f ( O ) ,  t k (0) 1

b ik a mm 1f~~~~
) f ( f )~~.

Al so def ine L . and ~~~. by
J k j k

J ~ ‘ E~~(o ) 1 > 0 if f . ( o )

L ik a 0 if f.(0) =

~ 
> 0 ~f 

~

— if d c v .  , V ,) L .kIc - 3

~j k  
= gT~~[d(v ~~. vk ) I  if L i k  -- d (v . ,  v

k
) .

(a) The condition

d ( v ~~. VIc
) < g.~~ (z ) .  z c [a k

. b :k )

is e qu i v a l en t  t O

- 
-
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~jk 
~~~ ~~~‘ ~ ‘ 

~
‘
~ k’ 

b
jkl .

(b) I f  j  = k I , = =

(c) it {j, k } 0 MS ~ 
~~~
‘ 
~jk 

< 
~~~~

‘

DEFINITIONS

= max [~ .~~ 

: { j , k c MP, j k) i f MI~ > 2

= -
~~ if MPI = 1.

F- = max 
~~jk 

: fj, ~~~~~~~ j - k]

= max 
~~jk 

( j ,  k~ c MP , j < k i

= max 
Hk 

: (j ,  k} c M , j < k J

We note that a ’ < i , ~~‘ < p-, , y ’ < - y ,  y ’ = :nax (~ . ‘ , F ’ ).  and y = m a x ( z , ~) ,

where the identities for y ’ and y are due to Remark 2 ( ~~) .

Some ex t ra  d e f i n i t i o n s  are  c o n v e n i e n t .  Given  OLi\ y T and nonnegative number

r de f ine  N ( y ,  r) = f x  ~ T:  d ( x , y)  - r } ,  and call N (~. - , r )  a neig hborhood

with center y and radius r. Given any u , v E T define (u, v) = 
~x c T:

d(u , x) + d(x , v) = d(u, v)}; intuitively , L(u, v) is t1~e unique imbedded

path  j o in ing  u an f v , and has “length” d(i , “) .

We say that a subset S of T is convex (or connected)  if L(u, v) c S

fo r  every u , v ~ S. HORN [5] proves a “p a i r — w i s e  i n t e r sec t ion” resul t  for

trees which , s l i g h t ly  modi f ied , is the foundation of the analysis to follow .

The resu l t  s ta tes  that  the  in te r sec t ion  of all of the members of a finite

c o l l e c t i o n  of (connec ted)  sub t rees  of a tree is nonempty ii and only i~

every pai r—wise  in te rsec t ion  of suh t rees  is nonemptv .  Following Horn ’ s

resu l t , CHAN and F RANCES [1] prove i i i  analogous paIr -~ .i s e  i n t e r s ec t i on

prope r ty  for  an imbedded t r e c :  the  i n t e r s e c t i o n  of all the  members

of a f i n i t e  co l l ec t ion  of conve ’: (and compact )  s u b s e t —  of an imbedded tree

T is nonempty i f  and o n l y  if every p a i r - w i s e  i n t e r s e c ti o n  is n onempty .

L . .. 
~~~~~~~~~
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It is intuitively appealing , anu c-in he proven ( s t - c- Lemma and

P r o p e r t y  10 of r e f e r e n c e  3) t i t ; t t  any i t t - i~~iW r h . .~~ of 1 is a convex (or

connected)  .-,et , and is also compact g i v ~o~ r it h e r wed~’ . i . .-nia~~t i - ~s about T.

Hence as a specia l  case of the p a i r — w i s e  i at -r ; .~n pro; cr t y  of r e f e r e n c e

1 we have the  fo l l owing  lemma .

LE~~1A 1. Given neighborhoods N(y1, r1) of T, I i ~. , m e  c o n d i t i on s

(2), ( 3) ,  and (4) below —ire e q ui v al - r i t :

n { N ( y . ,  r . ) :  1 < i < m} ~ (2)

N(y., r.) n N(v , rk) ~ ~ , 1 < j - Ic < in (3)

d(y. , ~~ < r~ + rk, 1 j < k < in. (4)

We remark tha t  the  nont r iv ia l  par t  of the proof  c i  the  lemma is showing

( 3)  implies ( 2 ) .  (2)  implies (3) t r i v i a l ly , and it is d i rect  to es tabl ish

the equivalence of (3) and ( 4 ) .

We s tudy the  f u n c t i o n  f ’  in order to minimize f .  It  is simpler to

develop the theory for  f ’  than fo r  f , and all such theory  then applies to

f .  For tuna te ly we do not need to de te rmine  the  set MP used in def in ing

f ’  in order to develop the theory ,  as we must  know f* in order to cons t ruc t

MP , and f*  is what we are t r y ing to f i n d .

In order  to min imize  f ’  we stud y the fo l lowing  equ iva len t  problem:

minimize z - . --

subject to f. [d(x, v.)] < z , i €- MP (5a)

c [ci’, ri ’] .  (5b)

We comment that (Sb) is j u s t i f i e d  by Remark (b).

The fo l lowing lemma gives cond i t ions  c - q u i v L t  to ( 5 ) .

LE?U4A 2.  Each of  the c o n d i t ion s  (6)  through ( i h ) ,  in

c o n j u n c t i o n  w i t h  t he  condir  ~ z ~ [a ’ , r~’ I,  is equivalent to 

(5):6
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3 x • f 1[d (x , v . ) j  < z , i ~ MP (6)

x ~ d(x , v.) < f~
1(z)~ i E HP (7)

x ~ x N(v~. f1
1
(z)), i c MP (8)

x x ~
- ii fN (v ~~ f~

’
~ z)): i ~ MP} (9)

S(z) a ri {N(v~ , f1
1
(z)): i MP} ~ (10)

N(v1, f.
1(z)) n N ( v ~~, fk

’(z)) 
~ ~~, 

{j, k~ c NP , k (11)

d ( v . ,  vk ) < f .
1( z )  + f~~~( z ) ,  {j, k } c MI’ , j < k  (12)

d(v~~ Vk ) ~ ~j~~(z )~ {j, k, c HP, j < k (13)

~j k  < z, {j, k} c NP , j < k (14)

a ’ < z (15—a)

< z (15—b)

< z.  (16)

We omit a formal proof of Lemma 2, as in most cases the equivalence of

adjacent conditions is clear. We use the fact that sic~ce is co1~tinuous

and str ictly increasing it has an inverse function f1
1 wh ich also is

con tinuous and stric tly increasing. Likewise g has an inverse function which

Is continuous and strictly increasing. The equivalence of (6) and (7) requires

z to be in the domain of f.1’, z e 
~~~~~~ 

f
1(6)], 

which is implied by

z € [ci ’, q ’] .  The equivalence of (13) arid (14) is due to Remark 2(a).

The key equivalence in (5) through (16) is the equivalence of (10), (11),

and (12), which Is due to Lemma 1.

Lemma 2 gives

PROPERTY 1. (a) The set of all minima of f is nonempty and con-

sists of S(y ’ ) ,  where y ’ is the minimum value of f. (b) with z =

each of the conditions (5) through (16) is necessa ry and s u f f icien t for

opt ima lity  to the minimax problem,

Proof (a) From Lemma 2 , since (6) implies ( i6 )  we conclude y ’ is a lower

bound on every value of f .  Using Lemma 2 and l e t t i n g  z = y ’ in (6) through

7 

_
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(16) it follows since (t6) implies (6) that y ’ is the m i n i m u m  val.ue of x , and that

S(y’) is the nonempty set of all minima of i .  (b) This part is immediate from (a)

and Lemma 2.

Since y ’ depends on HP , it generally cannot h~- umpurcd pr ior  to deter-

mining f*~ Fortunately, we shall see that ‘y ’ -,‘; ‘
~
‘ ca t be computed .

PROPERTY 2 (a) If ‘~ = a = f~~(O) , then ‘y = 1* ~~~
‘ , , i r d p HP.

(b) If ‘~ B = 13st ’ with s < t , then y f* = ‘y ’ ~nu  {s , t~ c NP.

Proof (a) Property 1 gives f* = y ’ , so that < f~ , ‘ < 
~~
. Th us y = a

implies -y = 1* = y ’. Further , we know f.(O) < f~ for  I € MS , so f (O) =

implies p MP. (b) Property 1 gives y ’ = f*, so B ’ < y ’ impl ies

13’ < i~~ . For any 13jk not us~ l in computing 8’. j c MS r k MS, so

Remark 2(c)  implies 3
~ k 

< f*. Thus for every 13jk ’ 8j k  < f*,

so that B < f*• Thus 13 < f* = y ’ < y B, so y = f* y ’.

Since = ~~~ Remark 2(c) implies {s, t} ri MS ~~, and so {s, t} c HP.

Given y = f* we now proceed to characterize the minima of f. Since y =

inax(c&, B),it suffices in turn to consider the eases y = ~ and y = 13 .

PROPERTY 3. If y = f (O) for some p € H, then ~~ IS the unique itIni~~~ of f

and p e NP.

ProOf. Property 2 gives y y ’ and p c NP. Thus, be Property 1, S(y) = S(y’) is

the nonempty set of minima of f. As y ’ = f~~(O)~ f l(?) = 0, so the definition

of S(-y ’) gives

# S(y) = S(y ’) c N(v , f;
i
e~

’) )  = { v } ,

and hence v~, is the unique minimum of f.

8 

~~~~~~~—-rn ~ -~~~- -~~~--- - -—-- ——-



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ - - - -- - - -

We now cons ider the  remaining case where fo r  some v and V
t

and y a .  The fol lowing prel iminary  remark is u s e f u l .

REMARK 3. Suppose y > a and for some distinct v and v~ with s < t , that

y = B~~ (f ~~ + f )*[d(v , vt)] = g~~~[d(v , v
~

) J .  (17)

The fo l lowing  conclusions may be drawn .

(a) We have

+ f~~~(y) = d(v , v
~

) (18)

mm [f ’
~~ (y) , 

~~~~~ 
> 0. (19)

(b) ~~ x*, x* ~ L(v , 
~~~~~~

d(v , x*) = f
1(y) . (20)

(c) Let x* c L(v , v
~

) ~ (20) holds . We have v # x* ~

d(x*, v
~
) = (21)

and

N(v
8, ~~~~~ 

0 N(v~ , 
~~~~~~~ 

= {x *}. (22)

Proof .  (a) (18) follows immediately by applying + to (17) .

Since y > a , y > f (O) and y > so f~~
1 ( )  > 0 and > 0,

establishing (19).

(b) From (a) we have 0 < f 1
(y) < d(v , vt

) ,  so continuity considerations and

the intermediate value theorem, as discussed in reference 2, assure the existence

of x* satisfying (20).

(c) Since x~ e L(v5, vs), from (a) we have

d(v , x*) + d(x*, v
~
) = d(v , v

~
) f ’(y) + (23)

(20) and (23) now give (21). (22) then follows from (20), (21), and

the fact that x~ e L(v , v
t). Then (19), (20), and (21) imply v ~ x* ~ 

V
t
.

We now employ the remark.

9 
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PROPERT Y 4 . Suppose -y > ci , and we have = for some distinct v and V
t

wi th  s < t. Let x* € L(v , v
~
) be such that d(v , x*) f’1 (y) : x* is the

unique minimum of f , and v~ # x~ ~ 
v~~. Also , {s , t) c NP.

Proof. Property 2 gives y = y ’ and {s, ti c NP. Thus from Property 1, the

definition of S(-y- ’), and Remark 3, we have i~i ~ S( y ) = S( y ’) c N (v , ç
]•(y))

o N( v~ , 
~~~~~~~ 

{x *}, and hence x” is the unique minimum of f, Remark 3

also gives v~ # x~ # v~ .

Parenthetically, we observe that when d(v~~ vk) < L ik 
Remark 2 gives

13jk  inax [f~~(O)~ ~k~°~~
1’ so that 13jk  ~ a. Thus with

~~~~~~ 
If d(v ., vk ) < U k for all 1 < j < k < m

~
max (B.k : {j, k} c M, j < k , L

ik 
< d(v~~ vk

)} otherwise

we have y = max(ci, 13*), a fact that may possibly permit y to be computed

more e f f i c i en t ly  than by using I = max(ct, 13).

To summarize our analysis, all of the basic results evolve from Lemma 2,

which in turn relies upon the pair—wise int~r~eetion property Of Le”~t”a 1.

Given y = y ’ , the equivalent conditions of Lemma 2 immediately imply that

= f*, and lead naturally to procedures (Properties 3 and 4) for computing

the unique minimum .

Dearing studies properties of the niinimax problem for more general norm—

-

‘ 
derived distances than the one we consider, and presents a number of properties,

Including a proof that y < f*. When distances are rectilinear between pairs

of points in the plane, he uses a version of the pair—wise intersection pro-

perty to show ‘y’ = f*, For the tree problem , he points out that his analysis

- 

- 
establishes f is strict quasiconvex , and that his analysis can be adapted to

show that  f has a unique minimum and provide the procedure (which we state

in Properties 3 and 4) for computing the minimum.

The major difference between our development and Dearing ’s is the way in

which all our basic results evolve naturally from Lemma 2. This evolution



in turn  en ta i l s  proofs d i f f e r e n t  f rom Dearing ’s. In add i t i on , we believe

Remark 2 , Lemma 2 , and Properties 1 and 2 , to be new . F ina l ly ,  we remark

that our analysis can be used readily to establish that = f* when distances

are a) rectilinear betweeen pairs of points in the plane or b) Tchebyshev

- 
- 

between pairs of points in Euclidean p—space , p > 1: for these cases

alternative global minima may exist. Properties 3 and 4 can be modified to pro—

vide procedures for constructing all alternative global minima .

11 
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APPENDIX

REMARK 2. Let {j, k} c M with j < k. Define the function with domain

IaJk, b ik] by

—l —1f . (z) + 
~k 

(z) ,

where

a
ik 

a max [f ~ (O)~ ~k~
0
~

1

bik a mm [f .(6), 1k~
6
~

1

The following assertions are true.

(a) [a
J k ~ 

b
ik
] 
~

(b) is strictly increasing and continuous, and has rat~ge [Ljk~ 
Ujk)~ 

where

> ~ if f~~(O) <

L
ik 0 ~~ f . ( 0)

f k
’[~~~

(0) } > 0 if f~~(O) >

+ 6 < 26 if f .(6)  <

Uj k 
a 26 if f .(6 ) =

+ 6 < 26 if f
1
(tS) >

Also, L < 6 < U.jk

(c) d(v~~ Vk) lies in or below the range of

(d) The inverse function of 
~~~ ~~~ 

exists, is strictly increasing and

continuous , has domain [L jk~ 
Uj k ] and range ta jk~ 

bj k ].

(e) Define 8j k by

8jk a
ik 

if d(v~~ Vk) ~ 
Lik.

13jk g~~ [d (v~, Vk)l if U k 
< d(v~ V

k
) .

The condition

d(v~ v
k
) ~ ~j~

(z)~ z € [ajk~ 
b
ik
] 

~~~~~ ______



~ 
-~~~- -- _

is equivalent to

~jk 
< z, z € [ajk~ bik

] .

(f) lf j — k = i ,8 = 1 3  =f(0).

(g) If {j, k} ri MS # ~~~~ 8jk < f*•

Proo f (a) For I € I j, k}, f~~ has domain 
~~~~~~~ 

f 1(6 ) ] .  As the domain of 8jk

Is the intersection of the domains of f~
1 and the domain of 

~jk 
is thus

taJk~ 
bjk]. a < ~ implies aik 

< bjk~ 
so [a.k , bjkl # 4) by Remark 1 (c).

(b) It is well known that a sum of strictly increasing, continuous functions

is strictly increasing and continuous, implying in turn that the range of

is [g~~(a~~), ~~~(b
J~

)J.

Due to the similarity of the various cases of this part of the proof,

we consider only the cases of f~~(O) < 
~k
10
~’ 

and f~(â) <

When f.(O) < 
~~~~ 

< f~~(6)~ ~~~~~ 
is in the range of ~~~ so L

ik

is well def ined , and 0 < L .k < 6. As f.(0) < 
~k~
°
~ ’ 8jk(a .k)

f
~~

Efk(0)] + = f1 ’Efk
(O)I + 0 = Ljk.

When < f~~(6) < 
~k~

6
~ ’ 

f~(6) is in the range of 
~k ’ ~° Ujk 

f ’E f ~ (6) ]

is well defined and 0 < Ujk < 6. As f~(6) < 
~k~

6
~ ’ Sjk(b .k) = ~~~Ef ~(6) l =

+ 
~~~~~~~~~ 

= iS + f
k
’ifj

(6) ]

(c) As 0 < d(v~~ V
k

) < 6, and since we know 0 < L ik  < 6 < Uj k < 26, the

conclusion follows.

(d) Since g~~ is strictly increasing and continuous, it has an inverse function,

—l —l
which is also strictly increasing and continuous. The domain of is

the range of and the range of 
~~~ 

is the domain of

(e) If d (v
3
, v

k) ~ 
L
Jk~ 

as U k is the minimum value of ~jk 
the equivalence

of the two conditions is immediate. When d(v~~ Vk) > Ljk~ 
by part (c) d(v~~ Vk)

is In the range of 
~jk~ 

in which case applying g
j~ 

to the first condition

gives the second, while applying ~jk 
to the second condition gives the first.

13
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(f)  When J — k — i we have = a
ik 

— ~~~~ f1(O).

(g) When (3, k) n MS ~L •, the definition of MS gives bik min[f
3

(iS),

< f*, so as 8
3k 

< b
ik 

we have < f*~

14
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